Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392707

RESUMO

Ferromagnetic materials have been attracting great interest in the last two decades due to their application in spintronics devices. One of the hot research areas in magnetism is currently the two-dimensional materials, transition metal dichalcogenides (TMDCs), which have unique physical properties. The origins and mechanisms of transition metal dichalcogenides (TMDCs), especially the correlation between magnetism and defects, have been studied recently. We investigate the changes in magnetic properties with a variation in annealing temperature for the nanoscale compound MoS2. The pristine MoS2 exhibits diamagnetic properties from low-to-room temperature. However, MoS2 compounds annealed at different temperatures showed that the controllable magnetism and the strongest ferromagnetic results were obtained for the 700 °C-annealed sample. These magnetizations are attributed to the unpaired electrons of vacancy defects that are induced by annealing, which are confirmed using Raman spectroscopy and electron paramagnetic resonance spectroscopy (EPR).

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947711

RESUMO

We propose and demonstrate that temperature-dependent curve-fitting error values of the Schottky diode I-V curve in the forward regime can be an auxiliary diagnostic signal as the temperature-scan Capacitance DLTS (CDLTS) signals and helps to work time-efficiently with high accuracy when using the Laplace Transform (LT)-DLTS or Isothermal Capacitance transient spectroscopy (ICTS) method. Using Be-doped GaAs showing overlapping DLTS signals, we verify that the LT-DLTS or ICTS analysis within a specific temperature range around the characteristic temperature Tpeak coincides well with the results of the CDLTS and Fourier Transform DLTS performed within the whole temperature range. In particular, we found that the LT-DLTS signals appeared intensively around Tpeak, and we confirmed it with the ICTS result. The occurrence of the curve fitting error signal is attributed to the relatively increased misfit error by the increased thermal emission from the deep-level trap in the case near the Tpeak, because the applied transport model excludes defect characteristics.

3.
Nanomaterials (Basel) ; 13(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999332

RESUMO

Memristors, resistive switching memory devices, play a crucial role in the energy-efficient implementation of artificial intelligence. This study investigates resistive switching behavior in a lateral 2D composite structure composed of bilayer graphene and 2D diamond (diamane) nanostructures formed using electron beam irradiation. The resulting bigraphene/diamane structure exhibits nonlinear charge carrier transport behavior and a significant increase in resistance. It is shown that the resistive switching of the nanostructure is well controlled using bias voltage. The impact of an electrical field on the bonding of diamane-stabilizing functional groups is investigated. By subjecting the lateral bigraphene/diamane/bigraphene nanostructure to a sufficiently strong electric field, the migration of hydrogen ions and/or oxygen-related groups located on one or both sides of the nanostructure can occur. This process leads to the disruption of sp3 carbon bonds, restoring the high conductivity of bigraphene.

4.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299712

RESUMO

The transport characteristics of a gate-all-around Si multiple-quantum-dot (QD) transistor were studied by means of experimental parametrization using theoretical models. The device was fabricated by using the e-beam lithographically patterned Si nanowire channel, in which the ultrasmall QDs were self-created along the Si nanowire due to its volumetric undulation. Owing to the large quantum-level spacings of the self-formed ultrasmall QDs, the device clearly exhibited both Coulomb blockade oscillation (CBO) and negative differential conductance (NDC) characteristics at room temperature. Furthermore, it was also observed that both CBO and NDC could evolve along the extended blockade region within wide gate and drain bias voltage ranges. By analyzing the experimental device parameters using the simple theoretical single-hole-tunneling models, the fabricated QD transistor was confirmed as comprising the double-dot system. Consequently, based on the analytical energy-band diagram, we found that the formation of ultrasmall QDs with imbalanced energetic natures (i.e., imbalanced quantum energy states and their imbalanced capacitive-coupling strengths between the two dots) could lead to effective CBO/NDC evolution in wide bias voltage ranges.

5.
ACS Appl Mater Interfaces ; 15(18): 22274-22281, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115789

RESUMO

High-quality Bi2Se3 thin films with topological insulating properties at room temperature have recently attracted much attention as one of the promising materials for realizing innovative electronic and optoelectronic devices. Here, we report the high crystallinity growth of Bi2Se3 thin films on a patterned sapphire substrate (PSS) by using a vapor-phase transport deposition with minimizing thermal dissociation of Se atoms vaporized in Bi2Se3 powder. This PSS not only reduces the large dislocation of heterogeneously grown Bi2Se3 on a sapphire substrate but also induces enhanced light absorption in the visible to near-infrared (IR) ranges compared to Bi2Se3 on planar sapphire substrates. Thus, the Bi2Se3 thin film laterally grown on the PSS reveals uniform surface properties and high crystallinity in the rhombohedral lattice phase with a full width at half maximum of 0.06° for the XRD (003) peak. Also, the photoresponse of the fabricated IR conversion device using Bi2Se3/PSS heterostructure exhibits excellent performance and high reliability with no degradation after continuous switching. As a result, the device constructed with the Bi2Se3/PSS exhibits one order of magnitude higher NIR induced-photocurrent and 1-2 orders of magnitude faster photo-switching than that with Bi2Se3/Al2O3. Such an enhancement in the device performance of Bi2Se3/PSS is confirmed by the increased absorption spectra in visible and NIR ranges and the improved light absorption distribution.

6.
ACS Omega ; 8(11): 10439-10448, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969412

RESUMO

Using scanning probe lithography (SPL) with KOH ink, this study fabricates aluminum hydroxide (Al(OH)3) nano- and microfeatures on a gold (Au) film that has been deposited on an aluminum (Al) layer. Hydroxyl ions (OH-) from the KOH ink loaded onto the Au film can react with the underlying Al layer to form Al(OH)3 structures due to the decrease in the pH of the reacting solution.1 In this process, Al(OH)3 solidification is governed by the pH of the KOH ink solution, which is affected by its volume. Suitably small volumes (down to hundreds of attoliters) of the KOH ink solution can be applied to the substrate surface using dip-pen nanolithography (DPN) and polymer-pen lithography (PPL). Using DPN and PPL printing with the solid (i.e., gel) and liquid phases of KOH ink, sub-micron- (minimum ≈300 nm) and micron-sized (≥4 µm) Al(OH)3 features can be obtained, respectively. The fabrication of Al(OH)3 structures using the proposed pH-dependent solidification process can be achieved with relatively small volumes in ambient conditions without requiring a previously reported molding process.1,2.

7.
J Phys Chem Lett ; 14(3): 750-762, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36651880

RESUMO

The charge transfer (CT) process has attracted much attention due to its contribution to the improvement of spectroscopic phenomena such as Raman scattering and fluorescence. A current challenge is understanding what factors can influence CT. Here, it is demonstrated that the enhancement factor (EF) of CT (∼2000) can reach the level of electromagnetic enhancement (∼1680) when resonant CT is carried out by (Fermi level energy) band alignment between a metal nanoparticle (NP) and conjugated polymer (polypyrrole (PPy)) nanowire (NW). This band alignment results in an on- or off-resonant CT. As a proof of concept for CT based surface enhanced Raman scattering (SERS) template, the Ag NPs-decorated PPy NW is utilized to effectively enhance the Raman signal of rhodamine 6G (EF of 5.7 × 105). Hence, by means of our demonstration, it is proposed that controlling the band alignment should be considered an important parameter for obtaining a large EF of spectroscopic phenomena.

8.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500823

RESUMO

InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag nano-rods was determined from transmission electron microscopy (TEM), total reflectivity and Raman scattering analyses. The downward shifts of peak position for LO and TO modes in the Raman spectrum are indicative of the production of Ag ion-induced strain during the annealing process of the InZnP:Ag nano-rod samples. The appearance of two emission peaks of both (A0 X) and (e, Ag) in the PL spectrum indicated that acceptor states by Ag diffusion are visible due to the effective incorporation of Ag-creating acceptor states. The binding energy between the acceptor and the exciton measured as a function of temperature was found to be 21.2 meV for the sample annealed at 300 °C. The noticeable MFM image contrast and the clear change in the MFM phase with the scanning distance indicate the formation of the ferromagnetic spin coupling interaction on the surface of InZnP:Ag nano-rods by Ag diffusion. This study suggests that the InZnP:Ag nano-rods should be a potential candidate for the application of spintronic devices.

9.
Nanomaterials (Basel) ; 12(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558260

RESUMO

In the presented paper, we studied bilayer CVD graphene transferred to a langasite substrate and irradiated with a focused electron beam through a layer of polymethyl methacrylate (PMMA). Changes in the Raman spectra and an increase in the electrical resistance of bigraphene after irradiation indicate a local phase transition associated with graphene diamondization. The results are explained in the framework of the theory of a chemically induced phase transition of bilayer graphene to diamane, which can be associated with the release of hydrogen and oxygen atoms from PMMA and langasite due to the "knock-on" effect, respectively, upon irradiation of the structure with an electron beam. Theoretical calculations of the modified structure of bigraphene on langasite and the experimental evaluation of sp3-hybridized carbon fraction indicate the formation of diamane nanoclusters in the bigraphene irradiated regions. This result can be considered as the first realization of local tunable bilayer graphene diamondization.

10.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144977

RESUMO

Designing photocathodes with nanostructures has been considered a promising way to improve the photoelectrochemical (PEC) water splitting activity. Cu2Te is one of the promising semiconducting materials for photoelectrochemical water splitting, the performance of Cu2Te photocathodes remains poor. In this work, we report the preparation of Cu2Te nanorods (NRs) and vertical nanosheets (NSs) assembled film on Cu foil through a vapor phase epitaxy (VPE) technique. The obtained nano architectures as photocathodes toward photoelectrochemical (PEC) performance was tested afterwards for the first time. Optimized Cu2Te NRs and NSs photocathodes showed significant photocurrent density up to 0.53 mA cm-2 and excellent stability under illumination. Electrochemical impedance spectroscopy and Mott-Schottky analysis were used to analyze in more detail the performance of Cu2Te NRs and NSs photocathodes. From these analyses, we propose that Cu2Te NRs and NSs photocathodes are potential candidate materials for use in solar water splitting.

11.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014638

RESUMO

Mobility spectrum analysis (MSA) is a method that enables the carrier density (and mobility) separation of the majority and minority carriers in multicarrier semiconductors, respectively. In this paper, we use the p-GaAs layer in order to demonstrate that the MSA can perform unique facilities for the defect analysis by using its resolvable features for the carriers. Using two proven methods, we reveal that the defect state can be anticipated at the characteristic temperature Tdeep, in which the ratio (RNn/Nh) that is associated with the density of the minority carrier Nn, to the density of the majority carrier Nh, exceeds 50%. (1) Using a p-GaAs Schottky diode in a reverse bias regime, the position of the deep level transient spectroscopy (DLTS) peak is shown directly as the defect signal. (2) Furthermore, by examining the current-voltage-temperature (I-V-T) characteristics in the forward bias regime, this peak position has been indirectly revealed as the generation-recombination center. The DLTS signals are dominant around the Tdeep, according to the window rate, and it has been shown that the peak variation range is consistent with the temperature range of the temperature-dependent generation-recombination peak. The Tdeep is also consistent with the temperature-dependent thermionic emission peak position. By having only RNn/Nh through the MSA, it is possible to intuitively determine the existence and the peak position of the DLTS signal, and the majority carrier's density enables a more accurate extraction of the deep trap density in the DLTS analysis.

12.
Nanomaterials (Basel) ; 12(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35457989

RESUMO

Ammonium toxicity is a significant source of pollution from industrial civilization that is disrupting the balance of natural systems, adversely affecting soil and water quality, and causing several environmental problems that affect aquatic and human life, including the strong promotion of eutrophication and increased dissolved oxygen consumption. Thus, a cheap catalyst is required for power generation and detoxification. Herein, compost soil is employed as a novel electrocatalyst for ammonium degradation and high-power generation. Moreover, its effect on catalytic activity and material performances is systematically optimized and compared by treating it with various reducing agents, including potassium ferricyanide, ferrocyanide, and manganese dioxide. Ammonium fuel was supplied to the compost soil ammonium fuel cell (CS-AFC) at concentrations of 0.1, 0.2, and 0.3 g/mL. The overall results show that ferricyanide affords a maximum power density of 1785.20 mW/m2 at 0.2 g/mL fuel concentration. This study focuses on high-power generation for CS-AFC. CS-AFCs are sustainable for many hours without any catalyst deactivation; however, they need to be refueled at regular intervals (every 12 h). Moreover, CS-AFCs afford the best performance when ferricyanide is used as the electron acceptor at the cathode. This study proposes a cheap electrocatalyst and possible solutions to the more serious energy generation problems. This study will help in recycling ammonium-rich wastewaters as free fuel for running CS-AFC devices to yield high-power generation with reducing agents for ammonium fuel cell power applications.

13.
Environ Res ; 205: 112201, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655605

RESUMO

To materialize the excellent photocatalyst for crystal violet dye-degradation, the graphitic carbon-encapsulated vanadium pentoxide (GC-V2O5) nanocomposites were synthesized through the simple sonication method by using the green tea waste-derived GC nanoflakes and the sonochemically synthesized V2O5 nanorods. The nanocomposites were confirmed to comprise an aggregated morphology, in which the orthorhombic V2O5 nanorods were well anchored with the intertwingled GC nanoflakes. Owing to the encapsulation of defective V2O5 by conductive GC, the GC-V2O5 nanocomposites exhibited the enhanced photocatalytic dye-degradation efficiency up to 98.4% within 105 min. Namely, the encapsulated GC nanosheets might compensate the native defects (i.e., charge traps) on the V2O5 surface; hence, the charge transport could be enhanced during the dye-degradation process while the photocarrier recombination could be suppressed. The results suggest the conducting layer-encapsulated semiconducting oxide nanocomposites (e.g., GC-V2O5) to be of good use for future green environmental technology, particularly, as a superb photocatalyst for dye degradation.


Assuntos
Grafite , Nanocompostos , Carbono , Catálise , Violeta Genciana , Grafite/química
14.
Chemosphere ; 286(Pt 2): 131823, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426138

RESUMO

Natural sunlight-driven photocatalytic hydrogen production from wastewater is one of the most desirable techniques that can realize future green energy technology. Herein, we report the synthesis and the characterization of the biomass activated carbon (AC)-decorated cobalt oxide (Co3O4) nanocomposites for solar-stimulated photocatalytic hydrogen production from sulphide wastewater. The Co3O4-AC nanocomposites were ultrasonically synthesized by using hydrothermally-grown spinel Co3O4 nanoflakes and biomass-derived AC nanoflakes. Co3O4-AC showed a nanobundle-like aggregated morphology, and exhibited a large specific surface area (~133 m2/g). Through utilizing Co3O4-AC as a photocatalyst for photocatalytic splitting of sulphide wastewater (0.2 M) under solar irradiance with 730 W/m2, an enhanced H2 production efficiency (~70 mL/h) was achieved owing to the synergic effects from 2-dimentionally configured Co3O4 and AC microstructures; i.e., large surface area of Co3O4 and high electrical conductivity of AC. These findings suggest the nanocomposites of Co3O4-AC to hold great promise for the green approach of photocatalytic wastewater splitting.


Assuntos
Nanocompostos , Águas Residuárias , Catálise , Carvão Vegetal , Luz Solar
15.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652753

RESUMO

The peculiar correlationship between the optical localization-state and the electrical deep-level defect-state was observed in the In0.52Al0.48As/In0.53Ga0.47As quantum well structure that comprises two quantum-confined electron-states and two hole-subbands. The sample clearly exhibited the Fermi edge singularity (FES) peak in its photoluminescence spectrum at 10-300 K; and the FES peak was analyzed in terms of the phenomenological line shape model with key physical parameters such as the Fermi energy, the hole localization energy, and the band-to-band transition amplitude. Through the comprehensive studies on both the theoretical calculation and the experimental evaluation of the energy band profile, we found out that the localized state, which is separated above by ~0.07 eV from the first excited hole-subband, corresponds to the deep-level state, residing at the position of ~0.75 eV far below the conduction band (i.e., near the valence band edge).

16.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578905

RESUMO

High crystalline ZnO nanorods (NRs) on Zn pre-deposited graphene/Cu sheet without graphene transfer process have been fabricated by self-catalyzed vapor-phase transport synthesis. Here, the pre-deposited Zn metal on graphene not only serves as a seed to grow the ZnO NRs, but also passivates the graphene underneath. The temperature-dependent photoluminescence spectra of the fabricated ZnO NRs reveal a dominant peak of 3.88 eV at 10 K associated with the neutral-donor bound exciton, while the redshifted peak by bandgap shrinkage with temperature and electron-lattice interactions leads a strong emission at 382 nm at room temperature. The optical absorption of the ZnO NRs/graphene hetero-nanostructure at this ultraviolet (UV) emission is then theoretically analyzed to quantify the absorption amount depending on the ZnO NR distribution. By simply covering the ZnO NR/graphene/Cu structure with the graphene/glass as a top electrode, it is observed that the current-voltage characteristic of the ZnO NR/graphene hetero-nanojunction device exhibits a photocurrent of 1.03 mA at 3 V under a light illumination of 100 µW/cm2. In particular, the suggested graphene/ZnO NRs/graphene hybrid-nanostructure-based devices reveal comparable photocurrents at a bidirectional bias, which can be a promising platform to integrate 1D and 2D nanomaterials without complex patterning process for UV device applications.

17.
Nanomaterials (Basel) ; 10(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878244

RESUMO

Aiming at materializing an excellent anodic source material of the high-performance sodium-ion battery (SIB), we fabricated the biomass carbon-silicon (C-Si) nanocomposites by the one-pot synthesis of facile magnesiothermic reduction using brown rice husk ashes. The C-Si nanocomposites displayed an aggregated morphology, where the spherical Si nanoparticles (9 nm on average) and the C nanoflakes were encapsulated and decorated with each other. When utilizing the nanocomposites as an SIB anode, a high initial discharge capacity (i.e., 378 mAh/g at 100 mA/g) and a high reversible capacity (i.e., 122 mAh/g at 200 mA/g) were achieved owing to their enhanced electronic and ionic conductivities. Moreover, the SIB device exhibited a high cyclic stability in its Coulombic efficiency (i.e., 98% after 100 charge-discharge cycles at 200 mA/g). These outstanding results depict that the one-pot synthesized biomass C-Si nanocomposites are beneficial for future green energy-storage technology.

18.
Nanomaterials (Basel) ; 10(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751143

RESUMO

The highly sensitive ultra-violet (UV) photodiode was demonstrated on the organic-inorganic hybrid heterostructure of ß-phase p-type polyfluorene (PFO)/n-type yttrium-doped zinc oxide nanorods (YZO-NRs). The device was fabricated through a simple fabrication technique of ß-phase PFO coating onto YZO-NRs that had been directly grown on graphene by the hydrothermal synthesis method. Under UV illumination (λ = 365 nm), the device clearly showed excellent photoresponse characteristics (e.g., high quantum efficiency ~690%, high photodetectivity ~3.34 × 1012 cm·Hz1/2·W-1, and fast response time ~0.17 s). Furthermore, the ratio of the photo current-to-dark current exceeds 103 even under UV illumination with a small optical power density of 0.6 mW/cm2. We attribute such superb photoresponse characteristics to both Y incorporation into YZO-NRs and conformation of ß-phase PFO. Namely, Y dopants could effectively reduce surface states at YZO-NRs, and ß-phase PFO might increase the photocarrier conductivity in PFO. The results suggest that the ß-phase p-PFO/n-YZO-NR hybrid heterostructure holds promise for high-performance UV photodetectors.

19.
Nanomaterials (Basel) ; 10(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679812

RESUMO

A sustainable and efficient electrocatalyst for the oxygen evolution reaction (OER) is vital to realize green and clean hydrogen production technology. Herein, we synthesized the nanocomposites of activated carbon-anchored nickel oxide (AC-NiO) via fully green routes, and characterized their excellent OER performances. The AC-NiO nanocomposites were prepared by the facile sonication method using sonochemically prepared NiO nanoparticles and biomass-derived AC nanosponges. The nanocomposites exhibited an aggregated structure of the AC-NiO nanotablets with an average size of 40 nm. When using the nanotablets as an OER catalyst in 1 M KOH, the sample displayed superb electrocatalytic performances, i.e., a substantially low value of overpotential (320 mV at 10 mA/cm2), a significantly small Tafel slope (49 mV/dec), and a good OER stability (4% decrease of overpotential after 10 h). These outstanding OER characteristics are considered as attributing to the synergetic effects from both the ample surface area of the electrochemically active NiO nanoparticles and the high electrical conductivity of the AC nanosponges. The results pronounce that the fully ecofriendly synthesized AC-NiO nanotablets can play a splendid role as high-performance electrocatalysts for future green energy technology.

20.
Nanomaterials (Basel) ; 9(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614501

RESUMO

Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp peaks. Micrographs of the b-SiO2 revealed that sticky RHA synthesized SiO2 nanopowder (S1) had clustered spherical nanoparticles (70 nm diameter), while b-SiO2 nanopowder synthesized from red RHA (S2) and b-SiO2 nanopowder synthesized from brown RHA (S3) were purely spherical (20 nm and 10 nm diameter, respectively). Compared to the S1 (11.36 m2g-1) and S2 (234.93 m2g-1) nanopowders, the S3 nanopowders showed the highest surface area (280.16 m2g-1) due to the small particle size and high porosity. The core level of the X-ray photoelectron spectroscopy (XPS) spectra showed that Si was constituted by two components, Si 2p (102.2 eV) and Si 2s (153.8 eV), while Oxygen 1s was observed at 531.8 eV, confirming the formation of SiO2. The anti-bacterial activity of the b-SiO2 nanopowders was investigated using both gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) microorganisms. Compared to S2 and S3 silica nanopowders, S1 demonstrated enhanced antibacterial activity. This study signifies the medical, biomedical, clinical, and biological importance and application of RHA-mediated synthesized b-SiO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...